Product Description
High Pressure Electric/Diesel Air Booster/Air Compressor
Introductions:
Our products have complete varieties and specifications. From the compressor type, it is divided into mobile type, fixed type, vehicle-mounted type, skid-mounted type and so on. Compressed media include air, natural gas, liquefied petroleum gas, hydrogen, recycled gas, nitrogen, ammonia, propylene, biogas, coalbed methane, carbon dioxide, etc. From the cylinder lubrication method, it is divided into oil lubrication and oil-free lubrication. From the compression type, it is divided into reciprocating piston type and screw type. Products are widely used in metallurgical machinery manufacturing, urban construction, steel, national defense, coal, mining, geology, natural gas, petroleum, petrochemical, chemical, electric power, textile, biology, medicine, glass and other industries.
Main features:
1. The compressor is manufactured by air-cooling and water-cooling technology, with high reliability and long service life.
2. The compressor unit has a high degree of automation. The unit operation is controlled by a programmable controller PLC and is equipped with multiple protections.
3. Automatic shutdown protection, unloading restart, automatic drainage, and alarm for insufficient oil.
| Flow rate | ≤50 Nm³/min |
| Pressure | ≤40 MPa |
| Medium | air, nitrogen, carbon dioxide, natural gas |
| Control | PLC automatic control |
| Drive mode | electric motor, diesel engine |
| Cooling method | air cooling, water cooling, mixed cooling |
| Installation method | mobile type, fixed type, vehicle-mounted type, skid-mounted type |
Main Technical Parameters:
| NO. | Model | Rotating Speed (r/min) |
Intake Pressure (Mpa) |
Exhaust Pressure (Mpa) |
Exhaust Volume (Nm³/min) |
Dimension (L*W*H)mm | Drive Power/Shaft Power(KW) | Weight (T) | Remark |
| 1 | SF-10/150 | 1330 | Atmospheric Pressure | 15 | 10 | 5500*2000*2300 | 227/139 | 6 | Stationary Diesel Engine |
| 2 | SF-10/150 | 1330 | 15 | 10 | 7500*2300*2300 | 227/139 | 8 | Container Skid Mounted Diesel Engine | |
| 3 | SF-10/250 | 1330 | 25 | 10 | 5500*2000*2300 | 227/173 | 6 | Stationary Diesel Engine | |
| 4 | SF-10/250 | 1330 | 25 | 10 | 7500*2300*2300 | 227/173 | 8 | Container Skid Mounted Diesel Engine | |
| 5 | SF-10/250 | 1330 | 25 | 10 | 15710*2496*3900 | 227/173 | 21.98 | Vehicular | |
| 6 | WF-10/60 | 1000 | 6 | 10 | 6000*2200*2200 | 135/110 | 6 | Container Skid Mounted Diesel Engine | |
| 7 | W-10/350 | 980 | 35 | 10 | 15710*2496*3900 | 303/187 | 21.98 | Vehicular | |
| 8 | WF-0.9/3-120 | 980 | 0.3 | 12 | 0.9 | 5100*2000*2350 | 75/50 | 5.4 | Container Skid Mounted Diesel Engine |
| 9 | SF-1.2/24-150 | 1200 | 2.4 | 15 | 1.2 | 7500*2300*2415 | 303/195 | 8.6 | Container Skid Mounted Diesel Engine |
| 10 | W-0.86/17-350 | 1000 | 1.7 | 35 | 0.86 | 8500*2500*2300 | 277/151 | 12 | Container Skid Mounted Diesel Engine |
| 11 | W-1.25/11-350 | 980 | 1.1 | 35 | 1.25 | 8000*2500*2500 | 185/145.35 | 15 | Container Skidding Motor |
| 12 | LG.V-25/150 | Screw 2279 Piston 800 | Atmospheric Pressure | 15 | 25 | 7000*2420*2300 | 355 | 16 | Container Skidding Motor |
| Model | Flow | Pressure | Stages | Cooling Type | Rotating Speed | Power |
| m³/min | Mpa | r/min | ||||
| SVF-15/100 | 15 | 10 | 1+2 | Air Cooling | 1150 | Diesel series |
| SVF-18/100 | 18 | 10 | 1+2 | 1150 | ||
| SVF-20/120 | 20 | 12 | 1+2 | 1150 | ||
| LGW-15/100 | 15 | 10 | 1+2 | 1150 | ||
| LGW-15/150 | 15 | 15 | 1+3 | 1150 | ||
| LGW-15/200 | 15 | 20 | 1+3 | 1150 | ||
| LGW-20/100 | 20 | 10 | 1+2 | 1150 | ||
| LGW-20/150 | 20 | 15 | 1+2 | 1150 | ||
| LGS-24/150 | 24 | 15 | 1+2 | 1150 | ||
| LGS-30/150 | 30 | 15 | 1+2 | 1150 | ||
| LGW-25/150 | 25 | 15 | 1+2 | Water cooling | 980 | Electric tandem |
| LGV-25/250 | 25 | 25 | 1+3 | 740 | Diesel series | |
| LGW-12/275 | 12 | 27.5 | 1+3 | 980 | Electric tandem | |
| LGV-15/85 | 15 | 8.5 | 1+2 | 980 | ||
| LGV-15/250 | 15 | 25 | 1+3 | Air Cooling | 740 | |
| LGV-15/350 | 15 | 35 | 1+4 | Water cooling | 740 | |
| LGV-15/400 | 15 | 40 | 1+4 | 740 | ||
| LGV-12.5/400 | 12.5 | 40 | 1+4 | 740 | ||
| LGV-15/100 | 15 | 10 | 1+2 | 740 |
Application Industry:
1. Suitable for oilfield pressure test, line sweeping, gas lift, well drilling and other projects.
2. Used in air tightness testing, air tightness inspection, pressure test, strength inspection, air tightness verification and other fields of various high-pressure vessels or pressure vessels such as gas cylinders, steel cylinders, valves, pipelines, pressure meters, high-pressure boilers, etc. .
3. On-board pressure testing, pressurization, pipeline pressure testing, line sweeping, gas lift and other projects in oil exploration.
4. Sand blasting and rust removal, parts dust removal, high pressure phosphorus removal, anti-corrosion engineering, well drilling operations, mountain quarrying.
5. For hydropower station turbine control and high-voltage power grid air short-circuit device for arc extinguishing.
6. Provide air source for large and medium-sized bottle blowing machines.
| Principle: | Reciprocating Compressor |
|---|---|
| Configuration: | Portable |
| Control: | PLC Automatic Control |
| Installation Method: | Trailer-Mounted Mobile, Container Skid-Mounted, Fi |
| Cooling Method: | Air Cooling, Water Cooling, Mixed Cooling |
| Pressure: | 0.1MPa-40MPa |
What are the advantages of using rotary vane compressors?
Rotary vane compressors offer several advantages that make them a popular choice for various applications. These compressors are widely used in industries where a reliable and efficient source of compressed air is required. Here are the advantages of using rotary vane compressors:
1. Compact and Lightweight:
Rotary vane compressors are typically compact and lightweight compared to other types of compressors. Their compact design makes them suitable for installations where space is limited, such as in small workshops or mobile applications. The lightweight nature of these compressors allows for easy transportation and maneuverability.
2. High Efficiency:
Rotary vane compressors are known for their high efficiency. The design of the vanes and the compression chamber allows for smooth and continuous compression, resulting in minimal energy losses. This efficiency translates into lower energy consumption and reduced operating costs over time.
3. Quiet Operation:
Rotary vane compressors operate with relatively low noise levels. The design of the compressor, including the use of vibration damping materials and sound insulation, helps to minimize noise and vibrations during operation. This makes rotary vane compressors suitable for applications where noise reduction is important, such as in indoor environments or noise-sensitive areas.
4. Oil Lubrication:
Many rotary vane compressors utilize oil lubrication, which provides several benefits. The oil lubrication helps to reduce wear and friction between the moving parts, resulting in extended compressor life and improved reliability. It also contributes to better sealing and improved efficiency by minimizing internal leakage.
5. Versatile Applications:
Rotary vane compressors are versatile and can be used in a wide range of applications. They are suitable for both industrial and commercial applications, including automotive workshops, small manufacturing facilities, dental offices, laboratories, and more. They can handle various compressed air requirements, from light-duty tasks to more demanding applications.
6. Easy Maintenance:
Maintenance of rotary vane compressors is relatively straightforward. Routine maintenance tasks typically include oil changes, filter replacements, and periodic inspection of vanes and seals. The simplicity of the design and the availability of replacement parts make maintenance and repairs easier and more cost-effective.
These advantages make rotary vane compressors an attractive choice for many applications, providing reliable and efficient compressed air solutions.
How do you choose the right air compressor for woodworking?
Choosing the right air compressor for woodworking is essential to ensure efficient and effective operation of pneumatic tools and equipment. Here are some factors to consider when selecting an air compressor for woodworking:
1. Required Air Volume (CFM):
Determine the required air volume or cubic feet per minute (CFM) for your woodworking tools and equipment. Different tools have varying CFM requirements, so it is crucial to choose an air compressor that can deliver the required CFM to power your tools effectively. Make sure to consider the highest CFM requirement among the tools you’ll be using simultaneously.
2. Tank Size:
Consider the tank size of the air compressor. A larger tank allows for more stored air, which can be beneficial when using tools that require short bursts of high air volume. It helps maintain a consistent air supply and reduces the frequency of the compressor cycling on and off. However, if you have tools with continuous high CFM demands, a larger tank may not be as critical.
3. Maximum Pressure (PSI):
Check the maximum pressure (PSI) rating of the air compressor. Woodworking tools typically operate within a specific PSI range, so ensure that the compressor can provide the required pressure. It is advisable to choose an air compressor with a higher maximum PSI rating to accommodate any future tool upgrades or changes in your woodworking needs.
4. Noise Level:
Consider the noise level of the air compressor, especially if you’ll be using it in a residential or shared workspace. Some air compressors have noise-reducing features or are designed to operate quietly, making them more suitable for woodworking environments where noise control is important.
5. Portability:
Assess the portability requirements of your woodworking projects. If you need to move the air compressor frequently or work in different locations, a portable and lightweight compressor may be preferable. However, if the compressor will remain stationary in a workshop, a larger, stationary model might be more suitable.
6. Power Source:
Determine the power source available in your woodworking workspace. Air compressors can be powered by electricity or gasoline engines. If electricity is readily available, an electric compressor may be more convenient and cost-effective. Gasoline-powered compressors offer greater flexibility for remote or outdoor woodworking projects where electricity may not be accessible.
7. Quality and Reliability:
Choose an air compressor from a reputable manufacturer known for producing reliable and high-quality equipment. Read customer reviews and consider the warranty and after-sales support offered by the manufacturer to ensure long-term satisfaction and reliability.
8. Budget:
Consider your budget and balance it with the features and specifications required for your woodworking needs. While it’s important to invest in a reliable and suitable air compressor, there are options available at various price points to accommodate different budgets.
By considering these factors and evaluating your specific woodworking requirements, you can choose an air compressor that meets the demands of your tools, provides efficient performance, and enhances your woodworking experience.
What are the key components of an air compressor system?
An air compressor system consists of several key components that work together to generate and deliver compressed air. Here are the essential components:
1. Compressor Pump: The compressor pump is the heart of the air compressor system. It draws in ambient air and compresses it to a higher pressure. The pump can be reciprocating (piston-driven) or rotary (screw, vane, or scroll-driven) based on the compressor type.
2. Electric Motor or Engine: The electric motor or engine is responsible for driving the compressor pump. It provides the power necessary to operate the pump and compress the air. The motor or engine’s size and power rating depend on the compressor’s capacity and intended application.
3. Air Intake: The air intake is the opening or inlet through which ambient air enters the compressor system. It is equipped with filters to remove dust, debris, and contaminants from the incoming air, ensuring clean air supply and protecting the compressor components.
4. Compression Chamber: The compression chamber is where the actual compression of air takes place. In reciprocating compressors, it consists of cylinders, pistons, valves, and connecting rods. In rotary compressors, it comprises intermeshing screws, vanes, or scrolls that compress the air as they rotate.
5. Receiver Tank: The receiver tank, also known as an air tank, is a storage vessel that holds the compressed air. It acts as a buffer, allowing for a steady supply of compressed air during peak demand periods and reducing pressure fluctuations. The tank also helps separate moisture from the compressed air, allowing it to condense and be drained out.
6. Pressure Relief Valve: The pressure relief valve is a safety device that protects the compressor system from over-pressurization. It automatically releases excess pressure if it exceeds a predetermined limit, preventing damage to the system and ensuring safe operation.
7. Pressure Switch: The pressure switch is an electrical component that controls the operation of the compressor motor. It monitors the pressure in the system and automatically starts or stops the motor based on pre-set pressure levels. This helps maintain the desired pressure range in the receiver tank.
8. Regulator: The regulator is a device used to control and adjust the output pressure of the compressed air. It allows users to set the desired pressure level for specific applications, ensuring a consistent and safe supply of compressed air.
9. Air Outlet and Distribution System: The air outlet is the point where the compressed air is delivered from the compressor system. It is connected to a distribution system comprising pipes, hoses, fittings, and valves that carry the compressed air to the desired application points or tools.
10. Filters, Dryers, and Lubricators: Depending on the application and air quality requirements, additional components such as filters, dryers, and lubricators may be included in the system. Filters remove contaminants, dryers remove moisture from the compressed air, and lubricators provide lubrication to pneumatic tools and equipment.
These are the key components of an air compressor system. Each component plays a crucial role in the generation, storage, and delivery of compressed air for various industrial, commercial, and personal applications.
editor by CX 2023-10-01
.webp)
.webp)
.webp)

