Product Description
Product description
The SF8-22 Vortex air compressor adopts high-efficiency and flexible modular system design, integrates 2 to 4 compression modules into a case, and continues to monitor the operating status of each compressed rotor with the ELOKTRONLKON controller. /Stop the rotor operation to ensure that the output meets the compressed air that meets your needs. In addition, perfect compression of air quality and user-friendly design to ensure your superior production technology.
Product Feature
Air intake filter
High -efficiency paper cylinder intake filter can filter dust and particles as small as 1um.
Automatic adjustment
When CHINAMFG the required pressure, the compressor will automatically stop, saving unnecessary energy consumption.
High -efficiency vortex rotation
Air-cooling vortex rotor, durable, reliable, and effective.
IP55 F Class / IE3 Motor
The completely closed air -cooling IP55 F -Class motor meets the energy efficiency standard of IE3 ultra -high -efficiency motor.
Frozen dryer
The compact and optimized built -in frozen dryer ensures to dry the compressed air and effectively prevent rust and corrosion of the air pipeline.
Specification
| Model | Max. Working pressure | Displacement | Motor mounting power | Noise level | Weight | |||||||||
| bar(e) | psig | l/s | m³/min | cfm | kW | hp | dB(A) | kg | lbs | |||||
| SF 1-6/2+-6+ (50/60 Hz) | ||||||||||||||
| SF 1 | 8 | 116 | 2.9 | 0.17 | 6.1 | 1.5 | 2 | 53 | 120 | 265 | ||||
| 10 | 145 | 1.9 | 0.11 | 4 | 1.5 | 2 | 53 | 120 | 265 | |||||
| SF 2 / SF 2+ | 8 | 116 | 4.2 | 0.25 | 8.9 | 2.2 | 3 | 55 | 125 | 276 | ||||
| 10 | 145 | 3.4 | 0.2 | 7.2 | 2.2 | 3 | 55 | 125 | 276 | |||||
| SF 4 / SF 4+ | 8 | 116 | 6.7 | 0.4 | 14.2 | 3.7 | 5 | 57 | 133 | 293 | ||||
| 10 | 145 | 5.9 | 0.35 | 12.5 | 3.7 | 5 | 57 | 133 | 293 | |||||
| SF 6 / SF 6+ | 8 | 116 | 9.8 | 0.59 | 20.8 | 5.5 | 7.5 | 59 | 157 | 346 | ||||
| 10 | 145 | 7.6 | 46 | 16.1 | 5.5 | 7.5 | 59 | 157 | 346 | |||||
| SF 8+-22+ (50/60 Hz) | ||||||||||||||
| SF 8+ | 8 | 116 | 13.4 | 0.8 | 28.4 | 7.4 | 10 | 63 | 485 | 1070 | ||||
| 10 | 145 | 11.4 | 0.68 | 24.2 | 7.4 | 10 | 63 | 485 | 1070 | |||||
| SF 11+ | 8 | 116 | 20.3 | 1.22 | 43 | 11 | 15 | 63 | 515 | 1135 | ||||
| 10 | 145 | 15 | 0.9 | 31.8 | 11 | 15 | 63 | 515 | 1135 | |||||
| SF 15+ | 8 | 116 | 26.4 | 1.58 | 55.9 | 14.8 | 20 | 63 | 580 | 1280 | ||||
| 10 | 145 | 23 | 1.38 | 48.7 | 14.8 | 20 | 63 | 580 | 1280 | |||||
| SF 17+ | 8 | 116 | 31 | 1.86 | 65.7 | 16.5 | 22 | 64 | 595 | 1315 | ||||
| 10 | 145 | 23.7 | 1.42 | 50.2 | 16.5 | 22 | 64 | 595 | 1315 | |||||
| SF 22+ | 8 | 116 | 40.8 | 2.45 | 86.5 | 22 | 30 | 65 | 680 | 1500 | ||||
| 10 | 145 | 30 | 1.8 | 63.6 | 22 | 30 | 65 | 680 | 1500 | |||||
| SFD 11+-22+ (50/60 Hz) | ||||||||||||||
| SFD 11+ | 8 | 116 | 9.8×2 | 0.59×2 | 20.8×2 | 11 | 15 | 63 | 625 | 1380 | ||||
| 10 | 145 | 7.6×2 | 0.46×2 | 16.1×2 | 11 | 15 | 63 | 625 | 1380 | |||||
| SFD 15+ | 8 | 116 | 13.4×2 | 0.80×2 | 28.4×2 | 14.8 | 20 | 64 | 755 | 1665 | ||||
| 10 | 145 | 11.4×2 | 0.68×2 | 24.2×2 4 | 14.8 | 20 | 64 | 755 | 1665 | |||||
| SFD 22+ | 8 | 116 | 19.2×2 | 1.21×2 | 2.8×2 | 22 | 30 | 65 | 840 | 1855 | ||||
| 10 | 145 | 5.0×2 | 0.90×2 | 31.8×2 | 22 | 30 | 65 | 840 | 1855 | |||||
| SF SKID/TWIN | ||||||||||||||
| Skid type | ||||||||||||||
| SF 1 | 8 | 116 | 2.9 | 0.17 | 6.1 | 1.5 | 2 | 65 | 105 | 232 | ||||
| 10 | 145 | 1.9 | 0.11 | 4 | 1.5 | 2 | 65 | 105 | 232 | |||||
| SF 2 | 8 | 116 | 4.2 | 0.25 | 8.9 | 2.2 | 3 | 67 | 110 | 243 | ||||
| 10 | 145 | 3.4 | 0.2 | 7.2 | 2.2 | 3 | 67 | 110 | 243 | |||||
| SF 4 | 8 | 116 | 6.6 | 0.4 | 14 | 3.7 | 5 | 68 | 120 | 265 | ||||
| 10 | 145 | 5.6 | 0.34 | 119 | 3.7 | 5 | 68 | 120 | 265 | |||||
| Twin type-twin air tank installation | ||||||||||||||
| SF 6T | 8 | 116 | 10.6 | 0.64 | 22.5 | 5.9 | 8 | 72 | 365 | 805 | ||||
| 10 | 145 | 9 | 0.54 | 19.1 | 5.9 | 8 | 72 | 365 | 805 | |||||
| SF 8T | 8 | 116 | 13.2 | 0.79 | 81.1 | 7.4 | 10 | 73 | 375 | 827 | ||||
| 10 | 145 | 11.2 | 0.67 | 68.8 | 7.4 | 10 | 73 | 375 | 827 | |||||
FAQ
Q1: What’s your delivery time?
A: 15 days to produce, within 3 days if in stock.
Q2: What’s methods of payments are accepted?
A: We agree T/T ,L/C , West Union ,Money Gram ,Paypal.
Q3: What about the shipments and package?
A: 40′ container for 2 sets, 20′ container for 1 set,
Machine in nude packing, spare parts in standard export wooden box.
Q4: Have you got any certificate?
A:We have got ISO,CE certificate.
Q5: How to control the quality?
A: We will control the quality by ISO and CE requests.
Q6: Do you have after-sale service and warranty service ?
A: Yes, we have.We can supply instruction for operation and maintenance.If necessary, we can send our engineer to repair the machine in your company.
Warranty is 1 year for the machine.
Q7: Can I trust your company ?
A: Our company has been certificated by Chinese government,and verified by SGS Inspection Company.
| After-sales Service: | Online |
|---|---|
| Lubrication Style: | Oil-free |
| Cooling System: | Air Cooling |
| Customization: |
Available
|
|
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
|
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|
What Is the Role of Water Separators in Water-Lubricated Compressors?
In water-lubricated compressors, water separators play a crucial role in maintaining the integrity and performance of the compressed air system. Here’s a detailed explanation of their role:
Water separators, also known as moisture separators or condensate separators, are components within the compressed air system that are specifically designed to remove water or moisture from the compressed air stream. They help ensure that the compressed air remains dry and free from excessive moisture, which can cause various issues in the system and downstream equipment.
The primary role of water separators in water-lubricated compressors is to separate and remove water that is present in the compressed air due to the compression process and condensation. Here’s how they accomplish this:
- Condensate Separation: During the compression of air, moisture present in the air is compressed along with the air molecules. As the compressed air cools down after the compression stage, the moisture condenses into liquid form. Water separators are designed to efficiently separate this condensate from the compressed air stream, preventing it from entering downstream equipment, pipelines, or end-use applications.
- Gravity and Centrifugal Separation: Water separators utilize various separation principles to separate the condensate from the compressed air. Gravity-based separators rely on the difference in density between the water droplets and the compressed air to allow the water to settle at the bottom of the separator, where it can be drained out. Centrifugal separators use centrifugal force to spin the air and water mixture, causing the water droplets to be thrown outwards and collected in a separate chamber.
- Coalescing and Filtration: Water separators often incorporate coalescing and filtration mechanisms to enhance their efficiency. Coalescing filters are used to capture and merge small water droplets into larger droplets, making it easier for the separator to separate them from the compressed air. Filtration elements, such as fine mesh or media, may be incorporated to remove any remaining water droplets or particulate matter that could potentially pass through the separator.
- Automatic Drainage: To ensure continuous and efficient operation, water separators are equipped with automatic drain valves. These valves periodically or on demand, expel the collected condensate from the separator. Automatic drainage prevents the accumulation of water in the separator, which can lead to reduced separation efficiency, increased pressure drop, and potential damage to downstream equipment.
By effectively removing water and moisture from the compressed air stream, water separators help prevent issues such as corrosion, clogging, freezing, and degradation of pneumatic equipment and processes. They contribute to maintaining the quality and reliability of the compressed air system while protecting downstream components and applications from the negative effects of moisture.
It is important to note that proper sizing, installation, and maintenance of water separators are essential to ensure their optimal performance. Regular inspection and maintenance of the separators, including draining the collected condensate, replacing filtration elements, and checking for any leaks or malfunctions, are necessary to ensure the efficient operation of water-lubricated compressors and the overall compressed air system.
How Does Water-Lubrication Affect the Lifespan of Air Compressor Components?
Water-lubrication can have both positive and negative effects on the lifespan of air compressor components. Here’s a detailed explanation of how water-lubrication can impact the lifespan of air compressor components:
Positive Effects:
- Lubrication: Water-lubrication provides effective lubrication to the moving parts of the air compressor, reducing friction and wear. Proper lubrication helps minimize the stress on components such as pistons, cylinders, and bearings, which can contribute to extended component lifespan.
- Cooling: Water-lubricated systems offer efficient cooling properties. The circulation of water through water jackets or cooling channels helps dissipate heat generated during compression. Effective cooling can prevent excessive temperature rise, reducing the risk of thermal damage and prolonging the lifespan of compressor components.
- Contaminant Control: Water-lubrication can aid in controlling contaminants within the compressor system. Water acts as a medium to trap and remove particulate matter or debris generated during compressor operation. This helps protect components from potential damage and contributes to their longevity.
Negative Effects:
- Corrosion: Water-lubrication introduces moisture into the compressor system, which can increase the risk of corrosion. Corrosion can degrade the integrity of components, leading to reduced lifespan and potential failures. Proper corrosion prevention measures, such as using corrosion-resistant materials or implementing water treatment processes, are essential to mitigate this negative effect.
- Contamination: Although water-lubrication can help control contaminants, it can also introduce impurities and contaminants if the water supply or treatment is not adequately managed. Contaminants such as sediment, minerals, or microbial growth can negatively impact component lifespan by causing blockages, wear, or chemical degradation. Regular maintenance and proper filtration systems are crucial to minimize contamination-related issues.
- System Complexity: Water-lubricated systems can be more complex than oil-lubricated systems, requiring additional components such as water pumps, filters, and separators. The complexity of the system can introduce more points of failure or maintenance requirements, which, if not addressed properly, can affect the overall lifespan of the compressor components.
Proper maintenance, monitoring, and adherence to manufacturer guidelines are essential to maximize the positive effects and mitigate the negative effects of water-lubrication on air compressor components. Regular inspection, cleaning, lubrication, and water treatment can help ensure optimal operation and prolong the lifespan of the compressor components.
Are There Any Downsides to Using Water-Lubricated Air Compressors?
While water-lubricated air compressors offer several advantages, there are also some downsides to consider when using this type of compressor. Here are a few potential drawbacks associated with water-lubricated air compressors:
- Water quality requirements: Water-lubricated compressors are highly dependent on the quality of the water used for lubrication. The water should be free from contaminants, minerals, and impurities that can affect the compressor’s performance or cause corrosion. Ensuring the consistent availability of high-quality water may require additional filtration or treatment processes, which can add complexity and cost to the system.
- Increased maintenance: Compared to oil-lubricated compressors, water-lubricated models may require more frequent maintenance. Regular checks, cleaning, and monitoring of the water system are necessary to prevent blockages, maintain proper water flow, and ensure the cleanliness of the compressor. This increased maintenance requirement can result in higher operational costs and more downtime for maintenance activities.
- Potential for corrosion: While water itself is not corrosive, certain water conditions, such as high mineral content or low pH levels, can promote corrosion within the compressor system. Corrosion can lead to component damage, reduced efficiency, and the need for repairs or replacements. Implementing corrosion prevention measures, such as water treatment or the use of corrosion-resistant materials, may be necessary to mitigate this risk.
- Compatibility limitations: Water-lubricated compressors may have limitations when it comes to compatibility with certain materials or gases. For example, in applications where the compressed air comes into contact with sensitive materials or requires specific gas purity, the use of water as a lubricant may not be suitable. In such cases, alternative lubrication methods or compressor types may be more appropriate.
- Environmental considerations: While water is generally considered environmentally friendly, the disposal of used water from the compressor system may require proper wastewater management. Depending on local regulations and requirements, additional steps may be needed to ensure compliant and environmentally responsible disposal of the water used for lubrication.
Despite these potential downsides, water-lubricated air compressors continue to be used in various industries and applications due to their specific advantages and suitability for certain environments. It is important to carefully evaluate the specific requirements, operating conditions, and maintenance considerations of a given application to determine whether a water-lubricated compressor is the most suitable choice.
editor by CX 2023-10-09
.webp)
.webp)
.webp)

